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Abstract. We study central-force percolation on a triangular lattice where the bonds are 
springs that can freely rotate around the nodes. All bonds in one preferred direction are 
infinitely rigid. In the other two directions a proportion p of the springs chosen at random 
are infinitely rigid while the rest have a finite strength. For this specific problem, the 
threshold at which the network becomes infinitely rigid corresponds to the usual bond- 
percolation threshold of a square lattice and is therefore exactly equal to 0.5. We use a 
transfer-matrix algorithm to study the elastic modulus of strips of width ranging from 2 
to 32 and length lo5. We obtain an estimate of the critical exponent relative to the scaling 
of the elastic moduli with the strip width, 0.99*0.03, close to s / v  for the corresponding 
isotropic electric problem. 

Elastic properties of randomly depleted media (and lattices) are different from other 
transport properties even though they are closely related to them both in nature and 
formalism. For instance, in usual percolation, the elastic critical exponent is very 
different from the conductivity one [I]  even though they might be related [2]. In 
central-force percolation [3] the difference between the elastic and other transport 
properties is even greater; here only the elastic behaviour is critical [4]. 

Two-dimensional percolation is already a problem for which many exact results 
are known [SI. This concerns either some thresholds for regular lattices (bond percola- 
tion on a square lattice, site percolation on a triangular lattice, etc) or even some 
critical exponents: most static ones are known and some relations among transport 
exponents have been proposed [2,6]. Conversely, no exact relations are known on 
the problem of central-force percolation. In particular, the lack of knowledge of the 
precise value of the threshold on any lattice renders very difficult the task of evaluating 
the critical exponents. 

In this letter we present a study of anisotropic ‘superelastic’ central-force percolation 
on a triangular lattice. This is the anisotropic analogue of the dual problem to 
central-force percolation, namely the ‘superelastic’ problem, where the bonds of the 
isotropic network either are infinitely rigid with probability p or have finite strength 
with probability I-p, as first studied by Sahimi and Goddard [7]. The bonds are 
Hookean linear springs free to rotate at their junction nodes. The anisotropy is 
introduced by letting all bonds in a preferred direction be infinitely rigid and a certain 
proportion p of randomly distributed bonds in the other two directions are also infinitely 
rigid while the other bonds have a finite strength. The anisotropy we introduce simplifies 
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the problem in a way that allows one to derive exactly the same rigidity threshold as 
for usual bond percolation on a square lattice. Thus we have p c  = 0.5. 

Such a simplification is not new: the introduction of a similar anisotropy in directed 
percolation on a square lattice, all bonds being present in one direction, makes it 
possible to map this problem exactly onto a solvable random walk problem [8]. 
However, the price of this simplification is that the universality class that this problem 
belongs to is different from the universality class of the isotropic problem. As a result, 
the critical exponents in this anisotropic directed percolation problem are different 
from those of the isotropic case. For instance, V I I  = 2 in the anisotropic case as compared 
to vII = 1.7334 for two-dimensional isotropic directed percolation [9]. 

Similarly, we cannot expect the results we present here to be valid for the isotropic 
‘superelastic’ central-force problem. However, they give an insight into the relationship 
between this elastic problem and the usual percolation problem. 

The difficulty of central-force percolation lies in the fact that the nature of the field 
to be transported (or not!) by the structure is essentially a vector one. A consequence 
of this is the non-locality of the transport [3]. For instance, the equivalent of the ‘red 
bonds’ or ‘singly connected bonds’ in usual percolation [ 101 has very different charac- 
teristics in this problem. One could define them in the central-force problem as those 
bonds that would ruin the rigidity of the structure if they were cut. With this definition, 
one can exhibit clusters of all sizes in which all bonds are ‘red’ [ l l ]  (see also [4]). 
The shape of these structures is far from being one dimensional as they would be in 
the usual percolation problem. However, this non-locality associated with the vector 
nature of central-force percolation is ‘dampened’ by the introduction of the anisotropy 
described above. 

We now show that the rigidity threshold is 0.5 for the anisotropic central-force 
problem on a triangular lattice. This is then also the threshold for the ‘superelastic’ 
problem that we are interested in here. In our triangular lattice, we can separate the 
set of parallel lines where all bonds are present (let us say direction 1 ) .  The rest of 
the network then consists of an oblique square lattice. On this square lattice the 
proportion of present bonds is p .  Let us first consider the case where p is smaller than 
the bond-percolation threshold for the square lattice, p c  = 0.5. In this case there exist 
only finite clusters. The whole triangular lattice cannot resist any force which is not 
parallel to direction 1. This is illustrated in figure 1.  If a force F is applied onto site 
A, we consider the cluster of sites connected to A on the square sublattice. We can 
draw an imaginary curve C that surrounds this cluster and that will not cross any bond 
that is not parallel to direction 1. In a central-force model, a bond can only support 
a force that is parallel to itself, because of the free rotation of the springs at the nodes. 
Now, writing down the equilibrium equation for the domain surrounded by C, we see 
that we have to equilibrate F by the sum of forces carried by the bonds that cross C 
and are thus parallel to direction 1. Therefore F must be parallel to direction 1, i.e. 
the structure is rigid only in this direction. Hence p c  is a lower bound on the rigidity 
threshold. 

When p is larger than p c  and point A, on which the force F is exerted, belongs to 
the infinite cluster of the square sublattice, we can extract a continuous path from A 
to any other point B on this infinite cluster arbitrarily far from A. This path plus all 
lines in direction 1 that are crossed by the path form a structure that can transmit the 
force F from A to B, whatever its direction might be. It is straightforward to find the 
distribution of force in such a substructure. The corresponding stress field is an 
admissible field for the entire structure and this implies that it can transmit force 
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Direction 1 

Figure 1. Geometry of the lattice for the anisotropic central-force percolation problem. 
When p is smaller than the usual bond-percolation threshold, the structure cannot hold 
any force that is not along the horizontal direction 1 where all bonds are present. We can 
transmit a force from A to P, but not from A to Q. 

pointing in any direction over an arbitrary distance. This is the natural criterion we 
choose to determine whether the lattice is rigid or not. Thus, since an infinite cluster, 
which by the above argument is rigid, is present when p is larger than p c ,  this threshold 
is also an upper bound for the rigidity threshold. 

This leads to the rigidity threshold being equal to p c  = 0.5. To compare this problem 
to the anisotropic ‘superelastic’ problem, let the elastic springs become infinitely rigid, 
and the missing (or infinitely soft) springs acquire a finite elasticity. A rigid structure 
in the previous problem will now be an injinitely rigid structure. Now the appearance 
of an infinitely rigid structure of infinite size constitutes the rigidity transition. Since 
the geometry is unchanged, the rigidity transition will occur at p = 0.5 also in this 
problem. 

We studied the anisotropic ‘superelastic’ problem through finite-size scaling analysis 
thanks to a transfer-matrix algorithm [ 121. Usual percolation, and particularly in this 
context conductivity, has been dealt with intensively [13]. It turns out that the 
superconductor-conductor percolation problem (corresponding to the ‘superelastic’ 
problem we study here) in the transfer-matrix approach is much less affected by 
correction-to-scaling terms than the usual conductor-insulator problem [ 141. The main 
reason for this lies in the fact that the former problem can be treated with periodic 
boundary conditions efficiently so as to reduce edge effects, in contrast to the latter 
where this is useless. 

We generated strips of length lo5 of width ranging from 2 to 32 at the rigidity 
threshold p c  = 0.5. We used periodic boundary conditions in the transverse direction. 
One end of the strip was fixed and at the other end a force was imposed. The elastic 
moduli for both shear and compression were then calculated. Shear corresponds to 
applying the force in the transverse direction and compression to applying the force 
along the direction along the strip. 
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We first studied the geometry of figure 2 ( a ) ,  i.e. the preferred direction is along 
the width of the strip. These lines thus form closed loops. (The boundary conditions 
are easy to visualise as giving the strip a cylindrical shape.) The evolution of the 
compliance (i.e. the inverse of the elastic modulus) with the width of the strip is shown 
in figure 2( b ) .  The compression compliance decreases very slowly, whereas the shear 
compliance decreases exponentially. One should again note the correspondence 
between the ‘superelastic’ and the usual (diluted) central-force problem. If the shear 
compliance in the ‘superelastic’ problem decreases exponentially, then the correspond- 
ing elastic modulus increases at the same rate. This means that the shear elastic modulus 
for the usual, or diluted, problem will decrease slowly or tend towards a constant. 
Conversely, if in the ‘superelastic’ problem, the compression compliance decreases 
slowly, then in the diluted problem the compression modulus will decrease exponen- 
tially. 
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Figure 2. ( a )  Geometry of the lattice strip used for the computation of the compliance 
reported in ( b ) .  The broken lines correspond to normal springs whereas the full lines 
indicate infinitely rigid bonds and pac denotes the periodic boundary conditions in the 
transverse direction. ( b )  Log,, of the elastic compliances for shear (0)  and compression 
(+) plotted against log,, of the width of the strip for p = 0.5 in the geometry of ( a ) .  

This seems to contradict the claim that the rigidity threshold is at p = 0.5. In fact, 
this unexpected behaviour is a result of the boundary conditions we chose for the 
direction in which all bonds are infinitely rigid (they form loops). This is very different 
from having fixed boundaries, since these infinitely rigid rings may rotate in the direction 
transverse to the length of the strip. Thus, structures of the type displayed in figure 3 
will be rigid if the force applied is a shear, and will be ‘soft’ if the force applied is a 
compression. These structures, which are peculiar to the boundary conditions we have 
chosen, occur frequently enough to destroy the scaling behaviour of the elastic moduli. 

To avoid these configurations, we also studied the case where the preferred direction 
forms a 7r/6 angle with the axis of the strip, still for the ‘superelastic’ problem. This 
geometry is shown in figure 4 ( a )  and the corresponding results for the compliances 
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Figure 3. ( a )  A configuration that cannot transmit any force A perpendicular to direction 
1, but acts as a rigid structure if a force B is applied. ( b )  We see that even though the 
structure is connected on the square sublattice from top to bottom, it cannot transmit a 
force C as a result of the periodic boundary conditions (PBC). These configurations are 
responsible for the unexpected behaviour in the corresponding 'superelastic' problem seen 
in figure 2( b) .  
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are shown in figure 4( b). These data indicate that for both shear and compression, 
the compliance, C, varies with the width w to some power x, C - W - ~ ,  where x =  
0.99 * 0.03, as determined by a least-squares fit. Thanks to finite-size scaling we would 
expect to obtain x = g /  v where g is the critical exponent describing the divergence of 
the elastic modulus at the threshold, E - ( p c  - p ) - * ,  and v describes the divergence of 
the correlation length, 6- Ipc-pI-”.  The geometric critical behaviour of this problem 
should be identical to that of the square sublattice which is at the percolation threshold. 
Therefore v should be 2 [ 151 and the value of g /  v is very close to the one obtained 
for the ratio s f v where s is the conductivity exponent for superconductor-conductor 
percolation. We should also note that this exponent is close to the one describing the 
divergence of the elastic modulus for superrigid-rigid percolation with bond-bending, 
as it has been suggested that the latter exponent is equal to s [6]. 

The problem of anisotropic central-force percolation that we have introduced here 
can be encountered in some practical cases such as in the piling of cylinders of slightly 
fluctuating radii [16]. However, in this context of piling, when the asymmetry of the 
contact between the cylinders, i.e. that the contact can resist compression but not 
traction (extension), is taken into account, then the relevant threshold is no longer the 
isotropic one but rather the directed percolation threshold which for the square 
bond-percolation problem is 0.644 701 [9]. 
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